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Effects of multi-mode coupling should be taken into account in computing the resonant buffeting

response of some kinds of flexible structures with low damping and concentrated modes. In this paper, a

new concept of ‘‘mode coupling factor’’ for computation of coupling effects between multi-mode

resonant responses of the structures is proposed. On the base of the mode coupling factor, a modified

SRSS method for computation of the resonant response contributed by multi-modes and their coupling

effects of the structures is further raised. The roof structure of Shanghai Southern Railway Station is

then taken as the case study to indicate the application and to verify the precision of the mode coupling

factor and the modified SRSS method. The computaion results indicate that the mode coupling factor

can quantitatively describe the contribution of mode coupling to the resonant response; and the

modified SRSS method can make the computation of structural resonant response with consideration of

mode coupling effects simpler.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Wind loads acting on large roof structures are usually key
factors for the structural design. Different from tall buildings,
large-span roof structures have concentrated modes, and thus
multi-mode responses and their coupling effects should be
considered in the computation of dynamic response and of
equivalent static wind loads (Nakamura et al., 1994; Uematsu
et al., 1999, 2001).

Davenport (1995) proposed a basic idea that wind induced
response of a building could be divided into mean, background
and resonant response components, which have been adopted in
follow-up researchers and structural load codes in different
countries to compute the wind induced responses of structures.
LRC method (Kasperski and Niemann, 1992) has been suggested
for computations of the background response component of tall
buildings and large roof structures (Zhou et al., 1999, 2000;
Holmes and Kasperski, 1996; Holmes, 1999, 2002). As for the
resonant response component of tall buildings, the total response
could approximately be regarded as the contribution only from
the fundamental mode response (Zhou et al., 1999, 2000). While
for large-span roofs, higher mode responses should be considered.
A new method composed of LRC method and inertial wind load
method was recently proposed by Holmes to compute the
equivalent static wind loads acting on roofs (Holmes and
Kasperski, 1996; Holmes, 2002). In this method multi-modal
ll rights reserved.

u).
response contribution was taken into account but the coupling
effect between the modes was not considered. In fact, for some
roofs with higher fundamental frequency, the background
response may play a dominant role in the total response; while
for those with lower fundamental frequency, resonant response
may also be important and the coupling effects between modes
should not be negligible (Gu et al., 2002, 2003).

This paper thus derives a new mode coupling factor to describe
the multi-mode coupling effect between modal resonant re-
sponses. An approximate and practical method named modified
SRSS method (hereafter referred to as MSRSS method) for
computation of wind induced resonant response with considera-
tion of the mode coupling effect is accordingly developed. This
method might be useful for developing a practical method for
equivalent static wind loads on structures taking mode coupling
effects into account. A real roof structure is finally taken as the
case example to show the application and to verify the precision
of the mode coupling factor and the MSRSS method.
2. Mode coupling factor and MSRSS method

2.1. Approximate formulation for resonant response with mode

coupling

The equation governing the motion of a structure under the
action of turbulent wind can be written in the matrix style as

½M�f €ygþ½C�f _ygþ½K�fyg ¼ ½R�fpðtÞg ð1Þ

www.elsevier.com/locate/jweia
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where [M], [C] and [K] are the mass, damping and stiffness
matrixes, respectively; fyg, f _yg and f €yg are the displacement,
velocity and acceleration vectors of the structure, respectively; [R]
is the force indicating matrix (m-by-n matrix) composed of zero
and unity, which expands the force vector fpðtÞg of m dimension
into the vector of n dimension.

Based on the random vibration theory and the hypothesis of
classic damping, the power spectrum density (PSD in short) of
dynamic displacement of the structure, which can take into
account of the coupling effects between modes, can be written as

½SyyðoÞ� ¼
Xn

j ¼ 1

Xn

k ¼ 1

ffjgH
�
j ðioÞffjg

T ½R�½SppðoÞ�½R�TffkgHkðioÞffkg
T

ð2Þ

that is,

½SyyðoÞ� ¼
Xn

j ¼ 1

Xn

k ¼ 1

ffjgH
�
j ðioÞ½SFF ðoÞ�HkðioÞffkg

T ð3Þ

where ffjg is the jth modal shape; HjðioÞ is the jth frequency
response function; ½SFF ðoÞ� the matrix of generalized wind forces;
and n is the number of modes participating in the vibration.

In real applications, some important responses, i.e., dynamic
displacements and internal forces, of major structural members,
should be obtained for structural design. The PSD of ith
displacement response (i=1,2,3y,m; m is the total number of
the concerned displacement responses for structural design. For
the simplification of expression, the ‘ith response’ is hereafter
referred to as ‘‘response’’) can be written as follows:

SiiðoÞ ¼
Xn

j ¼ 1

Xn

k ¼ 1

fijH
�
j ðioÞSFjFk

ðoÞHkðioÞfik ð4Þ

Integrating Eq. (4) with respect to o over [ol, oh], where ol

and oh are the lower limit and upper limit including the
concerned resonant frequencies for the integration, one can
obtain the variance of resonant dynamic displacement. The
resonant displacement includes the coupling effects between
modes and is regarded as the precise response in the paper for
comparison later on.

If the real part and imaginary part in Eq. (4) are notated by Re½�
and Im½�, respectively, Eq. (4) can be re-written as

SiiðoÞ ¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikfRe½H�j ðioÞHkðioÞ�þ Im½H�j ðioÞHkðioÞ�igSFjFk

¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikRe½H�j ðioÞHkðioÞ�SFjFk

þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfikIm½H�j ðioÞHkðioÞ�iSFjFk
ð5Þ

Vanmarcke has derived the expression of Re½H�j ðioÞHkðioÞ�
(Vanmarcke, 1972) as,

Re½H�j ðioÞHkðioÞ� ¼ 1
2 ½NNkj

� PPkjð1�o2
k=o

2Þ�jHkðioÞj2þ1
2½NNjk

� PPjkð1�o2
j =o

2Þ�jHjðioÞj2 ð6Þ

where NNjk and PPjk are both relative to the jth structural damping
ratio zj, kth damping ratio zk and q; q¼ok=oj; ok and oj are the
kth and the jth natural frequencies, respectively. The formulas for
NNjk and PPjk, which have been given by Vanmarcke (1972), are

NNjk ¼
1

Djk
8qzjðzkþzjqÞ½ð1� q2Þ

2
� 4qðzj � zkqÞðzk � zjqÞ�

n o
ð7Þ
PPjk ¼
1

Djk
2ð1� q2Þ½4qðzj � zkqÞðzk � zjqÞ � ð1� q2Þ

2
�

n o
ð8Þ

where

Djk ¼ 8q2½ðz2
j þz

2
k Þð1� q2Þ

2
� 2ðz2

k � z2
j q2Þðz2

j � z2
k q2Þ�þð1� q2Þ

4

ð9Þ

Let

Tjk ¼
1

2
½NNjk � PPjkð1�o2

j =o
2Þ�jHjðioÞj2 ð10Þ

Combining Eqs. (6) and (10) leads to

Xn

j ¼ 1

Xn

k ¼ 1

fijfikRe½H�j ðioÞHkðioÞ�SFjFk
¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikðTkjþTjkÞSFjFk

¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikTkjSFjFk
þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfikTjkSFjFk
ð11Þ

Furthermore,
Pn

j ¼ 1

Pn
k ¼ 1 fijfikTkjSFjFk

can be approximated byPn
k ¼ 1

Pn
j ¼ 1 fikfijTjkSFkFj

, that is,

Xn

j ¼ 1

Xn

k ¼ 1

fijfikTkjSFjFk
�
Xn

k ¼ 1

Xn

j ¼ 1

fikfijTjkSFkFj
¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijTjkSFkFj
;

ð12Þ

This approximation may only lead to a very small error to the final
computation result of structural dynamic response, which will be
illustrated in the following case study. In fact, in the atmosphere
boundary layer it appears that the ratio of imaginary part to real
part of the cross-spectral density of wind force acting on
structures is small (Simu and Scanlan, 1996). Even so, the
imaginary part of the cross-spectral density of the force is taken
into account in the following analysis. Thus one can derive the
following equation:

Xn

j ¼ 1

Xn

k ¼ 1

fijfikTkjSFjFk
þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfikTjkSFjFk
¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijTjkSFkFj

þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfikTjkSFjFk
¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijTjkðSFkFj
þSFjFk

Þ

¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijTjk2 ReðSFjFk
Þ ð13Þ

In the last derivation step in the above equation, the property of
Hermite matrix is applied. Therefore, the first term on the right
hand in Eq. (5) can be written as follows:

Xn

j ¼ 1

Xn

k ¼ 1

fijfikRe½H�j ðioÞHkðioÞ�SFjFk

¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijNNjkjHjðioÞj2ReðSFjFk
Þ

þ
Xn

j ¼ 1

Xn

k ¼ 1

fikfijPPjkð1�o2
j =o

2ÞjHjðioÞj2ReðSFjFk
Þ ð14Þ

As for the imaginary part of ½H�j ðioÞHkðioÞ�, Vanmarcke
(1972) gave

Im½H�j ðioÞHkðioÞ� ¼ 2 VVkj
o
ok

� �
þWWkj

o
ok

� �3
" #

jHkðioÞj2
(

� VVjk
o
oj

� �
þWWjk

o
oj

� �3
" #

jHjðioÞj2
)

ð15Þ
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where VVjk and WWjk are the function of the structural natural
frequencies, oj and ok, and damping ratios, zj and zk, and
q¼ok=oj;

VVjk ¼
1

Qjk
qðzk � zjqÞ½zjðzj � zkq2Þ � ð1� q4Þ� � ðzj � zkqÞðzj � zkq2Þ
� �

ð16Þ

WWjk ¼
1

Qjk
½qðzk � zjqÞðzj � zkq2Þþðzj � zkqÞðq4 � 1Þ� ð17Þ

and

Qjk ¼ q4ðz2
j þz

2
k Þ � zjzkq2ð1þq4Þþð1� q4Þ

2
ð18Þ

Letting

Ujk ¼ 2 VVjk
o
oj

� �
þWWjk

o
oj

� �3
" #

jHjðioÞj2 ð19Þ

and combining Eqs. (15) and (19) leads to

Xn

j ¼ 1

Xn

k ¼ 1

fijfikIm½H�j ðioÞHkðioÞ�iSFjFk
¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikðUkj

� UjkÞiSFjFk
¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikUkjiSFjFk
�
Xn

j ¼ 1

Xn

k ¼ 1

fijfikUjkiSFjFk
ð20Þ

Further considering

Xn

j ¼ 1

Xn

k ¼ 1

fijfikUkjiSFjFk
¼
Xn

k ¼ 1

Xn

j ¼ 1

fikfijUjkiSFkFj

¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijUjkiSFkFj
ð21Þ

the following equation can be derived:

Xn

j ¼ 1

Xn

k ¼ 1

fijfikUkjiSFjFk
�
Xn

j ¼ 1

Xn

k ¼ 1

fijfikUjkiSFjFk

¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijUjkiSFkFj
�
Xn

j ¼ 1

Xn

k ¼ 1

fijfikUjkiSFjFk

¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikUjkiðSFkFj
� SFjFk

Þ

¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikUjki½�2 ImðSFjFk
Þi�

¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfikUjk2 ImðSFjFk
Þ ð22Þ

Substituting Eq. (19) into Eq. (22) leads to

Xn

j ¼ 1

Xn

k ¼ 1

fijfik Im½H�j ðioÞHkðioÞ�iSFjFk

¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfik4VVjk
o
oj

� �
jHjðioÞj2 ImðSFjFk

Þ

þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfik4WWjk
o
oj

� �3

jHjðioÞj2 ImðSFjFk
Þ ð23Þ

Combining Eqs. (14) and (23), one can derive formula of the
power spectrum of dynamic displacement as follows:

SiiðoÞ ¼
Xn

j ¼ 1

Xn

k ¼ 1

fijfik Re½H�j ðioÞHkðioÞ�SFjFk

þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfik Im½H�j ðioÞHkðioÞ�iSFjFk
¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijNNjkjHjðioÞj2 ReðSFjFk
Þ

þ
Xn

j ¼ 1

Xn

k ¼ 1

fikfijPPjkð1�o2
j =o

2ÞjHjðioÞj2 ReðSFjFk
Þ

þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfik4VVjk
o
oj

� �
jHjðioÞj2 ImðSFjFk

Þ

þ
Xn

j ¼ 1

Xn

k ¼ 1

fijfik4WWjk
o
oj

� �3

jHjðioÞj2 ImðSFjFk
Þ ð24Þ

Integrating Eq. (24) with respect to o over ½oj;s;oj;e�, where the jth
mode resonant frequency range ½oj;s;oj;e� (j=1,2,y,n) is a narrow
frequency band for structures with low damping, can lead to the
variance of the resonant displacement response as

s2
R;i ¼

Z oR;e

oR;s

SiiðoÞdo

¼
Xn

j ¼ 1

Xn

k ¼ 1

fikfijNNjk

Z oj;e

oj;s

jHjðioÞj2 ReðSFjFk
ðoÞÞdo

þ
Xn

j ¼ 1

Xn

k ¼ 1

fikfijPPjk

Z oj;e

oj;s

ð1�o2
j =o

2ÞjHjðioÞj2 ReðSFjFk
ðoÞÞdo

þ
Xn

j ¼ 1

Xn

k ¼ 1

fikfij4VVjk

Z oj;e

oj;s

o
oj

� �
jHjðioÞj2 ImðSFjFk

ðoÞÞdo

þ
Xn

j ¼ 1

Xn

k ¼ 1

fikfij4WWjk

Z oj;e

oj;s

o
oj

� �3

jHjðioÞj2 ImðSFjFk
ðoÞÞdo

ð25Þ

In fact,

s2
R;ji ¼f2

ij

Z oj;e

oj;s

jHjðioÞj2 ReðSFjFj
Þdo

is the variance of the jth modal resonant displacement excluding the
coupling terms between modes. Due to PPjk ¼ VVjk ¼WWjk ¼ 0 when
j=k and NNjk ¼ 1, the variance of the resonant displacement can be re-
written as follows:

s2
R;i ¼

Xn

j ¼ 1

s2
R;ji 1þ

Xn

k ¼ 1
k a j

fik

fij

NNjk

Roj;e

oj;s
jHjðioÞj2 ReðSFjFk

ðoÞÞdoRoj;e

oj;s
jHjðioÞj2SFjFj

ðoÞdo

2
4

8><
>:

þPPjk

Roj;e

oj;s
ð1�o2

j =o
2ÞjHjðioÞj2 ReðSFjFk

ðoÞÞdoRoj;e

oj;s
jHjðioÞj2SFjFj

ðoÞdo

þ4VVjk

Roj;e

oj;s

o
oj

� �
jHjðioÞj2 ImðSFjFk

ðoÞÞdoRoj;e

oj;s
jHjðioÞj2SFjFj

ðoÞdo

þ4WWjk

Roj;e

oj;s

o
oj

� �3

jHjðioÞj2ImðSFjFk
ðoÞÞdoRoj;e

oj;s
jHjðioÞj2SFjFj

ðoÞdo

3
75
9>=
>; ð26Þ

For most of wind sensitive structures, the structural damping is
usually very small, so SFjFk

ðoÞ could be regarded as a white noise
excitation in the small integration interval of ½oj;s;oj;e�, i.e.,
SFjFk
ðoÞ ¼ SFjFk

ðojÞ ¼ const, where oj is the jth natural frequency of
the structure. Moreover,

o2
j

o2
¼

o
oj
¼

o
oj

� �3

� 1
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for o in the integration interval ½oj;s;oj;e�, due to the very
narrow frequency interval. Eq. (26) can thus be simplified as

s2
R;i ¼

Xn

j ¼ 1

s2
R;ji 1þ

Xq

k ¼ 1
k a j

fik

fij

NNjk

ReðSFjFk
ðojÞÞ

SFjFj
ðojÞ

þ4ðVVjkþWWjkÞ
ImðSFjFk

ðojÞÞ

SFjFj
ðojÞ

" #8><
>:

9>=
>;
ð27Þ

Furthermore, letting Njk ¼NNjk and Mjk ¼ 4ðVVjkþWWjkÞ, one
can re-write Eq. (27) as

s2
R;i ¼

Xn

j ¼ 1

s2
R;ji 1þ

Xn

k ¼ 1
k a j

fik

fij

Njk

ReðSFjFk
ðojÞÞ

SFjFj
ðojÞ

þMjk

ImðSFjFk
ðojÞÞ

SFjFj
ðojÞ

" #8><
>:

9>=
>;
ð28Þ

Eq. (28) is the variance of resonant displacement with coupling
effects of multi-modes. In Eq. (28), s2

R;ji is the variance of the jth
mode resonant displacement without mode coupling effects.
Therefore, the term of

Xn

k ¼ 1
k a j

fik

fij

Njk

ReðSFjFk
ðojÞÞ

SFjFj
ðojÞ

þMjk

ImðSFjFk
ðojÞÞ

SFjFj
ðojÞ

" #
0.0

0.5

1.0

N
jk

Frequency ratio ωj/ωk

ζj = ζk = 0.005
ζj = ζk = 0.01
ζj = ζk = 0.02
ζj = ζk = 0.05

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 1. Variations of Njk and Mjk

Fig. 2. Roof structure of Shang
reflects the coupling effect between modes. Njk and Mjk are both
relative to the structural frequency and damping ratio, which will
be further discussed later on.
2.2. Mode coupling factor and MSRSS method

To derive a simplified method for computation of resonant
dynamic response with modal coupling of structures under the
action of turbulent wind, Eq. (28) can be further written in the
following simple style:

s2
R;i ¼

Xn

j ¼ 1

s2
R;jið1þ

Xn

k ¼ 1
k a j

yjkÞ ¼
Xn

j ¼ 1

s2
R;jið1þyjÞ ð29Þ

where

yjk ¼
fik

fij

Njk

ReðSFjFk
ðojÞÞ

SFjFj
ðojÞ

þMjk

ImðSFjFk
ðojÞÞ

SFjFj
ðojÞ

" #
ð30Þ
0.0
-0.5

0.0

0.5

Frequency ratio ωj/ωk

M
jk

0.5 1.0 1.5 2.0 2.5 3.0

ζj = ζk = 0.005
ζj = ζk = 0.01
ζj = ζk = 0.02
ζj = ζk = 0.05

with frequency ratio oj/ok.

hai South Railway Station.
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yjk is the modal coupling factor considering the kth modal
coupling effect on the jth resonant response. Similarly,

yj ¼
Xn

k ¼ 1
k a j

yjk

is the jth modal coupling factor considering all the modal coupling
effect on the jth resonant response.

The RMS value of the resonant displacement can thus be
written as

sR;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j ¼ 1

s2
R;jið1þyjÞ

vuut ð31Þ

Eq. (31) is simple and convenient for computation of resonant
dynamic responses of the structures with mode coupling effects
under actions of turbulent wind. The present method is developed
based on SRSS method and is called the modified SRSS method
(MSRSS).

2.3. Analysis of Njk and Mjk

Njk and Mjk are the functions of structural damping ratios, zj

and zk, and q¼oj=ok, as mentioned above. Fig. 1 shows variation
trends of Njk and Mjk with structural frequency and damping. In
the figure, Njk varies with frequency in a narrow band fitter way
with the peak at oj=ok ¼ 1. The width of the curve of Njk increases
with the increase of structural damping ratio. For Mjk, when the
frequency ratio oj=ok is smaller than unity, a positive peak can be
found at oj=ok ¼ 1; but when the frequency ratio is larger than
unity, a negative peak appears also at oj=ok ¼ 1. Similar to Njk, the
curve of Mjk is widened with the increase of the damping.
Obviously, the structural damping and frequency have great
influences on Njk and Mjk. For the structures with small damping
and well separated modal frequencies, Njk and Mjk are both very
small, indicating negligible coupling effects between modes.
Fig. 4. Mean wind pressure coefficients on the roof.
3. Case study

To discuss the coupling effects between modes and to verify
the precision of the MSRSS method for computation of buffeting
responses with mode coupling of structures, a case study on
Shanghai South Railway Station is made. The precise method, the
SRSS method and the present MSRSS method are adopted in the
computations. The so called precise method is the integration of
Eq. (4) over the whole frequency range including all the concerned
resonant frequencies but excluding the background component, as
mentioned before.

The schematic diagram of roof structure of the Shanghai South
Railway Station is shown in Fig. 2. The roof looks like a flat straw
hat with an out-diameter of 270 m. It has a circular cantilever, the
Fig. 3. Photograph of the roof model in wind tunnel.
radial width of which is 21.4 m. The details of the structure, the
wind tunnel test and the test results can be found in Gu et al.
(2003) and only brief introductions are made.
3.1. Wind tunnel test and parameters for computation

In order to compute the dynamic responses of the roof, the
fluctuating wind pressures acting on the roof were obtained from
a wind tunnel test. The test was carried out in TJ-3 Boundary Layer
Wind Tunnel in Tongji University, whose working section is 15 m
wide and 2 m high. The geometry scale of the building model was
1:200, on which about 800 measuring points were arranged. The
pressure taps were connected with the measurement system
through PVC tubing. To avoid the distortion of the dynamic
pressure, the signals had been modified using the transfer
function of the tubing systems which had been developed by
the authors. A DSM 3000 scan valve system was used to measure
the wind pressures on the rigid model of the roof. The pressure
signals were sampled at 300 Hz. Fig. 3 presents the photograph of
the roof model in the wind tunnel.

According to the surrounding building situation around the
Shanghai South Railway Station, the suburban field condition,
corresponding to terrain category B defined in the Chinese code
Fig. 5. RMS fluctuating wind pressure coefficients on the roof.
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(GB 50009-2001), was simulated in the wind tunnel also at a
length scale of 1:200 by a combination of turbulence generating
spires and a barrier at the entrance of the wind tunnel, roughness
elements along the wind tunnel floor upstream of the model. The
exponent of the mean wind speed profile is 0.16, and the turbulent
intensity is about 12% at the top of the building. The simulated
turbulent intensity almost coincides with that defined in the
Chinese code (GB 50009-2001), but seems smaller than that
defined in codes of some other countries. However, effects of
turbulence intensity on the dynamic responses of the building can
Fig. 6. Typical mode sha
be investigated under the present turbulence intensity to evaluate
the applicability of the present method.

Figs. 4 and 5 show the typical mean pressure coefficients and
RMS fluctuating wind pressure coefficients on the roof.
Furthermore, the power spectrum densities and the coherences
at the measuring points were obtained. These data are the base of
the follow-up computation.

Furthermore, the dynamic behaviors of the building are
computed before the computation of the wind induced responses.
Fig. 6 presents some dominant mode shapes and the
pes and frequencies.
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corresponding natural frequencies of the structure. From the
detailed dynamic behaviors it can be found the building has a
dense mode distribution, the first natural frequency being
0.6582 Hz and about 40 mode shapes ranging from 0.6582 to
1.1928 Hz.
Fig. 7. Positions of selected points for computation.
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Fig. 8. Power spectrum of displacement at point 1.

Table 1
Comparison of the resonant responses from methods.

Computation methods RMS of resonant displacements (error)

Point 1 (z–D) Point

‘‘Precise’’ method 51.4 (0.0%) 13.6

SRSS 47.3 (�8.2%) 12.3

MSRSS 53.0 (2.9%) 14.0

Computation methods RMS of resonant displacements (error)

Point 5 (z–D) Point

‘‘Precise’’ method 47.3 (0.0%) 2.1 (0

SRSS 51.6 (9.3%) 2.3 (1

MSRSS 45.4 (�3.8%) 2.0 (�

Note: 1. Number in brackets is errors; 2. unit of displacement is mm.
The other wind parameters and structural parameters for the
computation are: (1) 10 min averaged wind speed at 10 m height:
29.67 m/s; (2) the structural damping ratio: 0.01; (3) the number
of modes participating in vibration: 50. The frequency range for
the integration is fA[0.5, 2.500] Hz; the integration step
Df=0.0025 Hz.

3.2. Computation results and comparison

With the above methods, the power spectra of dynamic
displacements and the RMS values at some selected points (see
Fig. 7) are computed. The power spectrum curve at the point 1,
which is in the leading edge of the roof cantilever, is shown in Fig.
8. The displacement response at the point 1 is the largest
compared with the other responses at the other selected points
shown in Fig. 7. From the figure it can be seen that (1) the
resonant response component plays a comparatively important
role in the total resonant response; (2) the resonant frequencies
are well separated from the background ones; (3) the
contributions from the modes whose frequencies are higher
than 2 Hz to the response are very small and so negligible.
Therefore, the frequency range for the integration is fA[0.5,
2.5] Hz.

Table 1 lists the resonant displacements in different directions
of the selected points 1–8, which are indicated in Fig. 7. In the
table, the errors in bracket is defined as

ðRM � RpÞ=RP � 100% ð32Þ

where RM is the RMS resonant displacement obtained using the
SRSS method or the MSRSS method; RP the RMS response from the
precise method defined above. As can be seen from the table that
the resonant displacements computed using the SRSS are around
10% larger or smaller than the precise values. These errors are
believed to be caused by omitting the coupling effects between
modes. While the MSRSS method is adopted, the computed
responses are close to those computed with the precise method,
with a maximum absolute error of �3.8% at the point 5.

Table 2 presents typical mode coupling factors of the resonant
displacements at the point 1, which is in the leading edge of the
roof cantilever (see Fig. 7), in z direction and the point 4 in x

direction. The ratios of some important modal resonant
displacement variances to the total resonant displacement
variance, ~s2

R;ji=s2
R;i, are also listed in the table. In the table, the

modes which have greater contributions to the resonant
displacements at the points 1 and 4 are listed while those have
contributions less than 3.4% and 3.3% to the resonant
displacement variance for the points 1 and 4, respectively, are
not presented. As can be seen from the table that the coupling
2 (x–D) Point 3 (z–D) Point 4 (x–D)

(0.0%) 55.4 (0.0%) 12.5 (0.0%)

(�9.5%) 50.7 (�8.5%) 11.1 (�11.3%)

(2.9%) 57.4 (3.6%) 12.9 (2.7%)

6 (y–D) Point 7 (y–D) Point 8 (x–D)

.0%) 6.8 (0.0%) 7.1 (0.0%)

1.3%) 7.4 (9.3%) 6.5 (�8.5%)

3.3%) 6.6 (�3.0%) 7.0 (�1.3%)
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Table 2
Modal coupling factors of some typical nodes.

Point 1 (z-direct.) Mode number 1 4 5 6 10 11 13 15 16 22

yj 0.24 0.20 0.09 �0.16 0.27 0.94 0.53 0.36 0.19 0.02

~s2
R;ji=s2

R;i ð%Þ
9.5 13.2 14.2 3.4 9.0 16.0 3.4 6.6 4.6 11.4

Point 4 (x-direct.) Mode number 1 4 5 6 9 10 11 13 14 16

yj 0.33 0.25 0.39 0.31 0.77 0.44 0.45 0.45 0.63 0.22

~s2
R;ji=s2

R;i ð%Þ
4.3 8.0 7.6 10.4 10.0 22.4 4.4 8.7 3.3 3.5

M. Gu, X.-Z. Zhou / J. Wind Eng. Ind. Aerodyn. 97 (2009) 573–580580
factors can make positive or negative influences on the response,
i.e., increasing or decreasing the resonant response. y11=0.94 at
the point 1 means the coupling effects between the 11th mode
and the other modes can make a 48.5% (0.94/[1+0.94]=48.5%)
contribution to the 11th mode resonant displacement variance; or
in other words, if the 11th mode coupling effect was neglected, the
11th mode resonant displacement variance would be about half of
the actual one. On the contrary, the 6th mode coupling with the
other modes will make a negative effect (y6=�0.16) on the
resonant response. Moreover, ~s2

R;11i=s2
R;i ¼ 16% means that the

11th resonant displacement variance makes a 16% contribution to
the total response variance. Compared with the other modal
values of ~s2

R;ji=s2
R;i, one can also see that the 11th mode has a

greatest contribution to the total resonant displacement variance.
Similarly, for the point 4, the response components of the modes
6, 9 and 10 have the main contributions to the total resonant
displacement, in which the 10th resonant displacement variance
makes a 22.4% contribution to the total resonant response
variance. Moreover, the coupling effects between the 10th mode
and the other modes can make a 30.6% (0.44/[1+0.44]=30.6%)
contribution to the 10 mode resonant displacement variance;
while the 10th resonant displacement variance makes a 22.4%
contribution to the total resonant response variance.
4. Concluding remarks

The new cencept of ‘‘mode coupling factor’’ describing the
coupling effects between multi-mode resonant responses, and
accordingly the modified SRSS mthod for computation the
dynamic resonant response of flexible structures with concen-
trated modes and low damping are proposed in the paper. The
mode coupling factor could quantitatively describe the contribu-
tion of mode coupling to the resonant response; and the modified
SRSS method could make the computation of resonant response
with mode coupling effects of the structures much simpler. The
roof structure of Shanghai Southern Railway Station is then taken
as the case study to indicate the application and to verify the
precision of the mode coupling factor and the modified SRSS
method. The computed results indicate that the coupling effects
between modes of the specific structure are significant and can be
quantitatively described by the mode coupling factor. Moreover,
the computed resonant displacements of the roof structure using
the MSRSS method agree well with the precise solutions.
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